
webcolors Documentation
Release 1.12

James Bennett

Dec 06, 2022





Contents

1 Documentation contents 3

Python Module Index 27

Index 29

i



ii



webcolors Documentation, Release 1.12

This module provides utility functions for working with the color names and color value formats defined by the HTML
and CSS specifications for use in documents on the web.

Support is included for normalizing and converting between the following formats (RGB colorspace only; conversion
to/from HSL can be handled by the colorsys module in the Python standard library):

• Specification-defined color names

• Six-digit hexadecimal

• Three-digit hexadecimal

• Integer rgb() triplet

• Percentage rgb() triplet

For example:

>>> import webcolors
>>> webcolors.hex_to_name('#daa520')
'goldenrod'

Implementations are also provided for the HTML5 color parsing and serialization algorithms. For example, parsing
the infamous “chucknorris” string into an rgb() triplet:

>>> import webcolors
>>> webcolors.html5_parse_legacy_color('chucknorris')
HTML5SimpleColor(red=192, blue=0, green=0)

Contents 1

https://docs.python.org/3/library/colorsys.html#module-colorsys


webcolors Documentation, Release 1.12

2 Contents



CHAPTER 1

Documentation contents

1.1 Installation guide

The 1.12 version of webcolors is officially tested and supported on the following versions of Python:

• Python 3.6

• Python 3.7

• Python 3.8

• Python 3.9

• Python 3.10

1.1.1 Normal installation

The preferred method of installing webcolors is via pip, the standard Python package-installation tool. If you don’t
have pip, instructions are available for how to obtain and install it. If you’re using a supported version of Python, pip
came bundled with your installation of Python.

Once you have pip, type:

pip install webcolors

1.1.2 Installing from a source checkout

If you want to work on webcolors, you can obtain a source checkout.

The development repository for webcolors is at <https://github.com/ubernostrum/webcolors>. If you have git installed,
you can obtain a copy of the repository by typing:

git clone https://github.com/ubernostrum/webcolors.git

3

https://pip.pypa.io/en/latest/installing.html
https://github.com/ubernostrum/webcolors
http://git-scm.com/


webcolors Documentation, Release 1.12

From there, you can use git commands to check out the specific revision you want, and perform an “editable” install
(allowing you to change code as you work on it) by typing:

pip install -e .

1.2 An overview of colors on the web

Colors on the web are typically specified in the sRGB color space, where each color is made up of a red component, a
green component and a blue component. This maps to the red, green and blue components of the pixels on a computer
display, and to the three sets of cone cells in the human eye, which respond to (roughly) the wavelengths of light
associated with red, green and blue.

On the web, sRGB colors are specified in formats which describe the color as a 24-bit integer, where the first 8 bits
provide the red value, the second 8 bits the green value and the final 8 bits the blue value. This gives a total space of
256 × 256 × 256 or 16,777,216 unique colors, though due to differences in display technology not all of these colors
may be clearly distinguishable on any given physical display.

1.2.1 HTML 4

HTML 4 defined two ways to specify sRGB colors:

• The character # followed by three pairs of hexadecimal digits, specifying values for red, green and blue compo-
nents in that order; for example, #0099cc.

• A set of predefined color names which correspond to specific hexadecimal values; for example, blue. HTML 4
defines sixteen such colors.

1.2.2 CSS1

In its description of color units, CSS1 added three new ways to specify sRGB colors:

• The character # followed by three hexadecimal digits, which is expanded into three hexadecimal pairs by re-
peating each digit; thus #09c is equivalent to #0099cc.

• The string rgb, followed by parentheses, between which are three base-10 integers in the range 0..255, which
are taken to be the values of the red, green and blue components in that order; for example, rgb(0, 153, 204).

• The same as above, except using percentages instead of numeric values; for example, rgb(0%, 60%, 80%).

CSS1 also suggested a set of sixteen color names. These names were identical to the set defined in HTML 4, but CSS1
did not provide definitions of their values and stated that they were taken from “the Windows VGA palette”.

1.2.3 CSS2

In its section on colors, CSS2 allowed the same methods of specifying colors as CSS1, and defined and provided
values for sixteen named colors, identical to the set found in HTML 4.

CSS2 also specified a list of names of system colors. These had no fixed color values, but would take on values from
the operating system or other user interface, and allowed elements to be styled using the same colors as the surrounding
user interface. These names are deprecated as of CSS3.

The CSS2.1 revision did not add any new methods of specifying sRGB colors, but did define one additional named
color: orange.

4 Chapter 1. Documentation contents

http://www.w3.org/Graphics/Color/sRGB
http://www.w3.org/TR/html401/types.html#h-6.5
http://www.w3.org/TR/CSS1/#color-units
http://www.w3.org/TR/CSS2/syndata.html#color-units
http://www.w3.org/TR/CSS2/ui.html#system-colors
https://www.w3.org/TR/CSS21/changes.html#q21.2
https://www.w3.org/TR/CSS21/changes.html#q21.2


webcolors Documentation, Release 1.12

1.2.4 CSS3

The CSS3 color module adds one new way to specify colors:

• A hue-saturation-lightness triplet (HSL), using the construct hsl().

CSS3 also adds support for variable opacity of colors, by allowing the specification of alpha-channel information
through the rgba() and hsla() constructs. These are used similarly to the rgb() and hsl() constructs, except a fourth
value is supplied indicating the level of opacity from 0.0 (completely transparent) to 1.0 (completely opaque). Though
not technically a color, the keyword transparent is also made available in lieu of a color value, and corresponds to
rgba(0,0,0,0).

CSS3 also defines a new set of 147 color names. This set is taken directly from the named colors defined for SVG
(Scalable Vector Graphics) markup, and is a superset of the named colors defined in CSS2.1.

1.2.5 HTML5

HTML5 exists in two forms: a living document maintained by WHATWG, and a W3C Recommendation. The two
HTML5 documents, as of this writing, share a common definition of color values and parsing, and formalize the
parsing and serialization of colors according to prior standards and real-world implementations in web browsers.

HTML5 does not introduce any new methods of specifying colors, but does simplify the description of colors and
introduce useful terminology.

• A set of three 8-bit numbers representing the red, blue and green components of an sRGB color is termed a
“simple color”.

• A seven-character string which begins with the character #, followed by six ASCII hex digits (i.e., A-Fa-f0-9),
representing the red, green and blue components of an sRGB color, is a “valid simple color”.

• A valid simple color expressed with only lowercase ASCII hex digits (i.e., a-f0-9) is a “valid lowercase simple
color”.

HTML5 provides three algorithms related to colors:

1. An algorithm for parsing simple color values, which works on any string that is a valid simple color as defined
above.

2. An algorithm for serializing simple color values, which will always produce a valid lowercase simple color.

3. A legacy color-parsing algorithm, which will yield a simple color from a variety of inputs, including inputs
which are valid simple colors, inputs which are valid for formats from other standards, and certain types of
“junk” inputs which were common in real-world documents.

The HTML5 legacy parsing algorithm does not support the non-color keyword transparent from CSS3 and will pro-
duce an error for that input. It also does not recognize the CSS2 “system color” keywords; it will convert each such
keyword to a simple color, consistently, but in a way which does not follow CSS2’s definitions of these keywords
(which itself was system- and configuration-dependent).

The implementations in this module are based on the definitions and algorithms of the W3C HTML5 Recommenda-
tion’s section on colors.

1.2.6 What this module supports

The webcolors module supports the following methods of specifying sRGB colors, and conversions between them:

• Six-digit hexadecimal

• Three-digit hexadecimal

1.2. An overview of colors on the web 5

http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/SVG11/types.html#ColorKeywords
http://www.w3.org/TR/SVG11/types.html#ColorKeywords
http://www.w3.org/TR/html5/infrastructure.html#colors
http://www.w3.org/TR/html5/infrastructure.html#colors


webcolors Documentation, Release 1.12

• Integer rgb() triplet

• Percentage rgb() triplet

• The defined named colors of HTML 4, CSS2, CSS2.1, and CSS3

The webcolors module does not support:

• The CSS1 named colors, which did not have defined values

• The CSS2 system colors, which did not have fixed values

• The transparent keyword, which denotes an effective lack of color

• Opacity/alpha-channel information specified via the rgba() construct

• Colors specified in the HSL color space, via hsl() or hsla() constructs

If you need to convert between sRGB-specified colors and HSL-specified colors, or colors specified via other means,
consult the colorsys module in the Python standard library, which can perform conversions amongst several com-
mon color systems.

1.3 Normalization and conventions

Since the various formats used to specify colors in web documents do not always map cleanly to Python data types,
and some variation is permitted in how to use each format in a web document, webcolors applies a set of conventions
for representing color names and values, and for normalizing them.

1.3.1 Python string types

As Python 2 is no longer supported by the Python core team, webcolors now supports only Python 3, where the string
type is a Unicode string. Python 3 does still have the bytes type, but all string arguments to functions in webcolors
must be str and never bytes.

1.3.2 Hexadecimal color values

For colors specified via hexadecimal values, webcolors will accept strings in the following formats:

• The character # followed by three hexadecimal digits, where digits A-F may be upper- or lowercase.

• The character # followed by six hexadecimal digits, where digits A-F may be upper- or lowercase (i.e., what
HTML5 designates a “valid simple color” when all digits are uppercase, and a “valid lowercase simple color”
when all digits are lowercase).

For output which consists of a color specified via hexadecimal values, and for functions which perform intermediate
conversion to hexadecimal before returning a result in another format, webcolors always normalizes such values to a
string in the following format:

• The character # followed by six hexadecimal digits, with digits A-F forced to lowercase (what HTML5 desig-
nates a “valid lowercase simple color”).

The function normalize_hex() can be used to perform this normalization manually if desired.

6 Chapter 1. Documentation contents

https://docs.python.org/3/library/colorsys.html#module-colorsys
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes


webcolors Documentation, Release 1.12

1.3.3 Integer and percentage rgb() triplets

Functions which work with integer rgb() triplets accept them as a 3-tuple of Python int. Functions which work
with percentage rgb() triplets accept them as 3-tuple of Python strings (see above regarding Python string types).

Plain tuples are accepted by all functions which deal with integer or percentage rgb() triplets, but three types of
namedtuple() are also provided to represent these values: IntegerRGB for integer triplets, PercentRGB for
percentage triplets, and HTML5SimpleColor for an HTML5 simple color. Functions which return an integer or
percentage rgb() triplet, or an HTML5 simple color, will return values of these types.

Internally, Python float is used in some conversions to and from the triplet representations; for each function which
may have the precision of its results affected by this, a note is provided in the documentation.

For colors specified via rgb() triplets, values contained in the triplets will be normalized in accordance with CSS
clipping rules:

• Integer values less than 0 will be normalized to 0, and percentage values less than 0% will be normalized to 0%.

• Integer values greater than 255 will be normalized to 255, and percentage values greater than 100% will be
normalized to 100%.

• The “negative zero” values -0 and -0% will be normalized to 0 and 0%, respectively.

The functions normalize_integer_triplet() and normalize_percent_triplet() can be used to
perform this normalization manually if desired.

1.3.4 Color names

For colors specified via predefined names, webcolors will accept strings containing names case-insensitively, so long as
they contain no spaces or non-alphabetic characters. Thus, for example, ‘AliceBlue’ and ‘aliceblue’ are both accepted,
and both will refer to the same color: rgb(240, 248, 255).

For output which consists of a color name, and for functions which perform intermediate conversion to a predefined
name before returning a result in another format, webcolors always normalizes such values to be entirely lowercase.

Note: Spelling variants

HTML 4, CSS1, and CSS2 each defined a color named gray. In CSS3, this color can be named either gray or grey,
and several other related color values each have two names in CSS3: darkgray/darkgrey, darkslategray/darkslategrey,
dimgray/dimgrey, lightgray/lightgrey, lightslategray/lightslategrey, slategray/slategrey.

Reversing from the hexadecimal value, integer tuple, or percent tuple to a name, for these colors, requires picking one
spelling, and webcolors chooses the gray spellings for consistency with HTML 4, CSS1, and CSS2.

Identifying sets of named colors

For purposes of identifying the specification from which to draw the selection of defined color names, webcolors uses
strings naming the specifications, and provides a set of constants containing the correct values.

Note that the CSS1 named colors are not supported here, as CSS1 merely “suggested” a set of color names, and
declined to provide values for them. The CSS2 “system colors” are also not represented here, as they had no fixed
defined values and are now deprecated.

1.3. Normalization and conventions 7

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float


webcolors Documentation, Release 1.12

1.4 Module contents

The contents of the webcolors module fall into five categories:

1. A set of (optional) data types for representing color values.

2. Constants for several purposes.

3. Normalization functions which sanitize input in various formats prior to conversion or output.

4. Conversion functions between each method of specifying colors.

5. Implementations of the color parsing and serialization algorithms in HTML5.

See the documentation regarding conventions for information regarding the types and representation of various color
formats in webcolors.

All conversion functions which involve color names take an optional argument to determine the specification from
which to draw color names. See the set of specification identifiers for valid values.

All conversion functions, when faced with identifiably invalid hexadecimal color values, or with a request to name
a color which has no name in the requested specification, or with an invalid specification identifier, will raise
ValueError.

1.4.1 Data types

Integer and percentage rgb() triplets, and HTML5 simple colors, can be passed to functions in webcolors as plain
3-tuple of the appropriate data type. But the following namedtuple() instances are also provided to represent
these types more richly, and functions in webcolors which return triplets or simple colors will return instances of these:

class webcolors.IntegerRGB
A namedtuple() representing an integer RGB triplet. Has three fields, each of type int and in the range
0-255 inclusive:

red
The red portion of the color value.

green
The red portion of the color value.

blue
The red portion of the color value.

class webcolors.PercentRGB
A namedtuple() representing a percentage RGB triplet. Has three fields, each of type str and representing
a percentage value in the range 0%-100% inclusive:

red
The red portion of the color value.

green
The red portion of the color value.

blue
The red portion of the color value.

class webcolors.HTML5SimpleColor
A namedtuple() representing an HTML5 simple color. Has three fields, each of type int and in the range
0-255 inclusive:

8 Chapter 1. Documentation contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#int


webcolors Documentation, Release 1.12

red
The red portion of the color value.

green
The red portion of the color value.

blue
The red portion of the color value.

1.4.2 Constants

Several sets of constants are provided in webcolors, for use when converting or identifying colors or specifications.

Specification identifiers

The following constants are available for indicating the specification from which to draw color name choices, in
functions which can work with multiple specifications.

webcolors.CSS2
Represents the CSS2 specification. Value is ‘css2’.

webcolors.CSS21
Represents the CSS2.1 specification. Value is ‘css21’.

webcolors.CSS3
Represents the CSS3 specification. Value is ‘css3’.

webcolors.HTML4
Represents the HTML 4 specification. Value is ‘html4’.

Color mappings

The following constants are available for direct use in mapping from color names to values, although it is strongly
recommended to use one of the normalizing conversion functions instead.

Mappings from names to hexadecimal values

webcolors.HTML4_NAMES_TO_HEX
A dict whose keys are the normalized names of the sixteen named HTML 4 colors, and whose values are the
normalized hexadecimal values of those colors.

webcolors.CSS2_NAMES_TO_HEX
An alias for HTML4_NAMES_TO_HEX , as CSS2 defined the same set of colors.

webcolors.CSS21_NAMES_TO_HEX
A dict whose keys are the normalized names of the seventeen named CSS2.1 colors, and whose values are
the normalized hexadecimal values of those colors (sixteen of these are identical to HTML 4 and CSS2; the
seventeenth color is orange, added in CSS2.1).

webcolors.CSS3_NAMES_TO_HEX
A dict whose keys are the normalized names of the 147 named CSS3 colors, and whose values are the nor-
malized hexadecimal values of those colors. These colors are also identical to the 147 named colors of SVG.

1.4. Module contents 9

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


webcolors Documentation, Release 1.12

Mappings from hexadecimal values to names

webcolors.HTML4_HEX_TO_NAMES
A dict whose keys are the normalized hexadecimal values of the sixteen named HTML 4 colors, and whose
values are the corresponding normalized names.

webcolors.CSS2_HEX_TO_NAMES
An alias for HTML4_HEX_TO_NAMES, as CSS2 defined the same set of colors.

webcolors.CSS21_HEX_TO_NAMES
A dict whose keys are the normalized hexadecimal values of the seventeen named CSS2.1 colors, and whose
values are the corresponding normalized names (sixteen of these are identical to HTML 4 and CSS2; the seven-
teenth color is orange, added in CSS2.1).

webcolors.CSS3_HEX_TO_NAMES
A dict whose keys are the normalized hexadecimal values of the 147 named CSS3 colors, and whose values
are the corresponding normalized names. These colors are also identical to the 147 named colors of SVG.

Note: Spelling variants

Some values representing named gray colors can map to either of two names in CSS3, because it supports both
gray and grey spelling variants for those colors. This mapping will always return the variant spelled gray (such
as lightgray instead of lightgrey). See the documentation on name conventions for details.

1.4.3 Normalization functions

webcolors.normalize_hex(hex_value)
Normalize a hexadecimal color value to a string consisting of the character # followed by six lowercase hex-
adecimal digits (what HTML5 terms a “valid lowercase simple color”).

If the supplied value cannot be interpreted as a hexadecimal color value, ValueError is raised. See the
conventions used by this module for information on acceptable formats for hexadecimal values.

Examples:

>>> normalize_hex('#0099cc')
'#0099cc'
>>> normalize_hex('#0099CC')
'#0099cc'
>>> normalize_hex('#09c')
'#0099cc'
>>> normalize_hex('#09C')
'#0099cc'
>>> normalize_hex('#0099gg')
Traceback (most recent call last):

...
ValueError: '#0099gg' is not a valid hexadecimal color value.
>>> normalize_hex('0099cc')
Traceback (most recent call last):

...
ValueError: '0099cc' is not a valid hexadecimal color value.

Parameters hex_value (str) – The hexadecimal color value to normalize.

Return type str

10 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


webcolors Documentation, Release 1.12

Raises ValueError – when the input is not a valid hexadecimal color value.

webcolors.normalize_integer_triplet(rgb_triplet)
Normalize an integer rgb() triplet so that all values are within the range 0..255.

Examples:

>>> normalize_integer_triplet((128, 128, 128))
IntegerRGB(red=128, green=128, blue=128)
>>> normalize_integer_triplet((0, 0, 0))
IntegerRGB(red=0, green=0, blue=0)
>>> normalize_integer_triplet((255, 255, 255))
IntegerRGB(red=255, green=255, blue=255)
>>> normalize_integer_triplet((270, -20, -0))
IntegerRGB(red=255, green=0, blue=0)

Parameters rgb_triplet (tuple) – The integer rgb() triplet to normalize.

Return type IntegerRGB

webcolors.normalize_percent_triplet(rgb_triplet)
Normalize a percentage rgb() triplet so that all values are within the range 0%..100%.

Examples:

>>> normalize_percent_triplet(('50%', '50%', '50%'))
PercentRGB(red='50%', green='50%', blue='50%')
>>> normalize_percent_triplet(('0%', '100%', '0%'))
PercentRGB(red='0%', green='100%', blue='0%')
>>> normalize_percent_triplet(('-10%', '-0%', '500%'))
PercentRGB(red='0%', green='0%', blue='100%')

Parameters rgb_triplet (tuple) – The percentage rgb() triplet to normalize.

Return type PercentRGB

1.4.4 Conversions from color names to other formats

webcolors.name_to_hex(name, spec=CSS3)
Convert a color name to a normalized hexadecimal color value.

The color name will be normalized to lower-case before being looked up.

Examples:

>>> name_to_hex('white')
'#ffffff'
>>> name_to_hex('navy')
'#000080'
>>> name_to_hex('goldenrod')
'#daa520'
>>> name_to_hex('goldenrod', spec=HTML4)
Traceback (most recent call last):

...
ValueError: 'goldenrod' is not defined as a named color in html4.

Parameters

1.4. Module contents 11

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


webcolors Documentation, Release 1.12

• name (str) – The color name to convert.

• spec (str) – The specification from which to draw the list of color names. Default is
CSS3.

Return type str

Raises ValueError – when the given name has no definition in the given spec.

webcolors.name_to_rgb(name, spec=CSS3)
Convert a color name to a 3-tuple of int suitable for use in an rgb() triplet specifying that color.

The color name will be normalized to lower-case before being looked up.

Examples:

>>> name_to_rgb('white')
IntegerRGB(red=255, green=255, blue=255)
>>> name_to_rgb('navy')
IntegerRGB(red=0, green=0, blue=128)
>>> name_to_rgb('goldenrod')
IntegerRGB(red=218, green=165, blue=32)

Parameters

• name (str) – The color name to convert.

• spec (str) – The specification from which to draw the list of color names. Default is
CSS3.

Return type IntegerRGB

Raises ValueError – when the given name has no definition in the given spec.

webcolors.name_to_rgb_percent(name, spec=CSS3)
Convert a color name to a 3-tuple of percentages suitable for use in an rgb() triplet specifying that color.

The color name will be normalized to lower-case before being looked up.

Examples:

>>> name_to_rgb_percent('white')
PercentRGB(red='100%', green='100%', blue='100%')
>>> name_to_rgb_percent('navy')
PercentRGB(red='0%', green='0%', blue='50%')
>>> name_to_rgb_percent('goldenrod')
PercentRGB(red='85.49%', green='64.71%', blue='12.5%')

Parameters

• name (str) – The color name to convert.

• spec (str) – The specification from which to draw the list of color names. Default is
CSS3.

Return type PercentRGB

Raises ValueError – when the given name has no definition in the given spec.

12 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


webcolors Documentation, Release 1.12

1.4.5 Conversion from hexadecimal color values to other formats

webcolors.hex_to_name(hex_value, spec=CSS3)
Convert a hexadecimal color value to its corresponding normalized color name, if any such name exists.

The hexadecimal value will be normalized before being looked up.

Note: Spelling variants

Some values representing named gray colors can map to either of two names in CSS3, because it supports both
gray and grey spelling variants for those colors. This function will always return the variant spelled gray (such
as lightgray instead of lightgrey). See the documentation on name conventions for details.

Examples:

>>> hex_to_name('#ffffff')
'white'
>>> hex_to_name('#fff')
'white'
>>> hex_to_name('#000080')
'navy'
>>> hex_to_name('#daa520')
'goldenrod'
>>> hex_to_name('#daa520', spec=HTML4)
Traceback (most recent call last):

...
ValueError: '#daa520' has no defined color name in html4.

Parameters

• hex_value (str) – The hexadecimal color value to convert.

• spec (str) – The specification from which to draw the list of color names. Default is
CSS3.

Return type str

Raises ValueError – when the given color has no name in the given spec, or when the supplied
hex value is invalid.

webcolors.hex_to_rgb(hex_value)
Convert a hexadecimal color value to a 3-tuple of int suitable for use in an rgb() triplet specifying that color.

The hexadecimal value will be normalized before being converted.

Examples:

>>> hex_to_rgb('#fff')
IntegerRGB(red=255, green=255, blue=255)
>>> hex_to_rgb('#000080')
IntegerRGB(red=0, green=0, blue=128)

Parameters hex_value (str) – The hexadecimal color value to convert.

Return type IntegerRGB

Raises ValueError – when the supplied hex value is invalid.

1.4. Module contents 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


webcolors Documentation, Release 1.12

webcolors.hex_to_rgb_percent(hex_value)
Convert a hexadecimal color value to a 3-tuple of percentages suitable for use in an rgb() triplet representing
that color.

The hexadecimal value will be normalized before being converted.

Examples:

>>> hex_to_rgb_percent('#ffffff')
PercentRGB(red='100%', green='100%', blue='100%')
>>> hex_to_rgb_percent('#000080')
PercentRGB(red='0%', green='0%', blue='50%')

Parameters hex_value (str) – The hexadecimal color value to convert.

Return type PercentRGB

Raises ValueError – when the supplied hex value is invalid.

1.4.6 Conversions from integer rgb() triplets to other formats

webcolors.rgb_to_name(rgb_triplet, spec=CSS3)
Convert a 3-tuple of int, suitable for use in an rgb() color triplet, to its corresponding normalized color
name, if any such name exists.

To determine the name, the triplet will be converted to a normalized hexadecimal value.

Note: Spelling variants

Some values representing named gray colors can map to either of two names in CSS3, because it supports both
gray and grey spelling variants for those colors. This function will always return the variant spelled gray (such
as lightgray instead of lightgrey). See the documentation on name conventions for details.

Examples:

>>> rgb_to_name((255, 255, 255))
'white'
>>> rgb_to_name((0, 0, 128))
'navy'

Parameters

• rgb_triplet (typing.Union[IntegerRGB, Tuple[int, int, int]]) –
The rgb() triplet

• spec (str) – The specification from which to draw the list of color names. Default is
CSS3.

Return type str

Raises ValueError – when the given color has no name in the given spec.

webcolors.rgb_to_hex(rgb_triplet)
Convert a 3-tuple of int, suitable for use in an rgb() color triplet, to a normalized hexadecimal value for that
color.

Examples:

14 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


webcolors Documentation, Release 1.12

>>> rgb_to_hex((255, 255, 255))
'#ffffff'
>>> rgb_to_hex((0, 0, 128))
'#000080'

Parameters rgb_triplet (typing.Union[IntegerRGB, Tuple[int, int,
int]]) – The rgb() triplet.

Return type str

webcolors.rgb_to_rgb_percent(rgb_triplet)
Convert a 3-tuple of int, suitable for use in an rgb() color triplet, to a 3-tuple of percentages suitable for
use in representing that color.

Note: Floating-point precision

This function makes some trade-offs in terms of the accuracy of the final representation; for some common
integer values, special-case logic is used to ensure a precise result (e.g., integer 128 will always convert to
‘50%’, integer 32 will always convert to ‘12.5%’), but for all other values a standard Python float is used
and rounded to two decimal places, which may result in a loss of precision for some values due to the inherent
imprecision of IEEE floating-point numbers.

Examples:

>>> rgb_to_rgb_percent((255, 255, 255))
PercentRGB(red='100%', green='100%', blue='100%')
>>> rgb_to_rgb_percent((0, 0, 128))
PercentRGB(red='0%', green='0%', blue='50%')
>>> rgb_to_rgb_percent((218, 165, 32))
PercentRGB(red='85.49%', green='64.71%', blue='12.5%')

Parameters rgb_triplet (typing.Union[IntegerRGB, Tuple[int, int,
int]]) – The rgb() triplet.

Return type PercentRGB

1.4.7 Conversions from percentage rgb() triplets to other formats

webcolors.rgb_percent_to_name(rgb_percent_triplet, spec=CSS3)
Convert a 3-tuple of percentages, suitable for use in an rgb() color triplet, to its corresponding normalized
color name, if any such name exists.

To determine the name, the triplet will be converted to a normalized hexadecimal value.

Note: Spelling variants

Some values representing named gray colors can map to either of two names in CSS3, because it supports both
gray and grey spelling variants for those colors. This function will always return the variant spelled gray (such
as lightgray instead of lightgrey). See the documentation on name conventions for details.

Examples:

1.4. Module contents 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
http://en.wikipedia.org/wiki/IEEE_floating_point
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple


webcolors Documentation, Release 1.12

>>> rgb_percent_to_name(('100%', '100%', '100%'))
'white'
>>> rgb_percent_to_name(('0%', '0%', '50%'))
'navy'
>>> rgb_percent_to_name(('85.49%', '64.71%', '12.5%'))
'goldenrod'

Parameters

• rgb_percent_triplet (typing.Union[PercentRGB, Tuple[str, str,
str]]) – The rgb() triplet.

• spec (str) – The specification from which to draw the list of color names. Default is
CSS3.

Return type str

Raises ValueError – when the given color has no name in the given spec.

webcolors.rgb_percent_to_hex(rgb_percent_triplet)
Convert a 3-tuple of percentages, suitable for use in an rgb() color triplet, to a normalized hexadecimal color
value for that color.

Examples:

>>> rgb_percent_to_hex(('100%', '100%', '0%'))
'#ffff00'
>>> rgb_percent_to_hex(('0%', '0%', '50%'))
'#000080'
>>> rgb_percent_to_hex(('85.49%', '64.71%', '12.5%'))
'#daa520'

Parameters rgb_percent_triplet (typing.Union[PercentRGB, Tuple[str,
str, str]]) – The rgb() triplet.

Return type str

webcolors.rgb_percent_to_rgb(rgb_percent_triplet)
Convert a 3-tuple of percentages, suitable for use in an rgb() color triplet, to a 3-tuple of int suitable for
use in representing that color.

Some precision may be lost in this conversion. See the note regarding precision for
rgb_to_rgb_percent() for details.

Examples:

>>> rgb_percent_to_rgb(('100%', '100%', '100%'))
IntegerRGB(red=255, green=255, blue=255)
>>> rgb_percent_to_rgb(('0%', '0%', '50%'))
IntegerRGB(red=0, green=0, blue=128)
>>> rgb_percent_to_rgb(('85.49%', '64.71%', '12.5%'))
IntegerRGB(red=218, green=165, blue=32)

Parameters rgb_percent_triplet (typing.Union[PercentRGB, Tuple[str,
str, str]]) – The rgb() triplet.

Return type IntegerRGB

16 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


webcolors Documentation, Release 1.12

1.4.8 HTML5 color algorithms

Warning: There are two versions of the HTML5 standard. Although they have common origins and are extremely
similar, one is a living document (maintained by WHATWG) and the other is a W3C Recommendation. The
functions documented below implement the HTML5 color algorithms as given in section 2.4.6 of the W3C HTML5
Recommendation.

webcolors.html5_parse_simple_color(input)
Apply the HTML5 simple color parsing algorithm.

Examples:

>>> html5_parse_simple_color('#ffffff')
HTML5SimpleColor(red=255, green=255, blue=255)
>>> html5_parse_simple_color('#fff')
Traceback (most recent call last):

...
ValueError: An HTML5 simple color must be a string exactly seven characters long.

Parameters input (str, which must consist of exactly the character ‘#’ followed by six hexadec-
imal digits) – The color to parse.

Return type HTML5SimpleColor

Raises ValueError – when the given input is not a Unicode string of length 7, consisting of
exactly the character # followed by six hexadecimal digits.

webcolors.html5_serialize_simple_color(simple_color)
Apply the HTML5 simple color serialization algorithm.

Examples:

>>> html5_serialize_simple_color((0, 0, 0))
'#000000'
>>> html5_serialize_simple_color((255, 255, 255))
'#ffffff'

Parameters simple_color (typing.Union[IntegerRGB, HTML5SimpleColor,
Tuple[int, int, int]], all values in the range 0..255 inclusive)
– The color to serialize.

Return type A valid lowercase simple color, which is a Unicode string exactly seven characters
long, beginning with # and followed by six lowercase hexadecimal digits.

webcolors.html5_parse_legacy_color(input)
Apply the HTML5 legacy color parsing algorithm.

Note that, since this algorithm is intended to handle many types of malformed color values present in real-world
Web documents, it is extremely forgiving of input, but the results of parsing inputs with high levels of “junk”
(i.e., text other than a color value) may be surprising.

Examples:

>>> html5_parse_legacy_color('black')
HTML5SimpleColor(red=0, green=0, blue=0)
>>> html5_parse_legacy_color('chucknorris')

(continues on next page)

1.4. Module contents 17

http://www.w3.org/TR/html5/infrastructure.html#colors
http://www.w3.org/TR/html5/infrastructure.html#colors
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


webcolors Documentation, Release 1.12

(continued from previous page)

HTML5SimpleColor(red=192, green=0, blue=0)
>>> html5_parse_legacy_color('Window')
HTML5SimpleColor(red=0, green=13, blue=0)

Parameters input (str) – The color to parse.

Return type HTML5SimpleColor

Raises ValueError – when the given input is not a Unicode string, or when it is precisely the
string ‘transparent’.

1.5 Conformance and testing

Much of the behavior of webcolors is dictated by the relevant web standards, which define the acceptable color formats,
how to determine valid values for each format and the values corresponding to defined color names. Maintaining
correct conversions and conformance to those standards is crucial.

The source distribution of webcolors (the .tar.gz file you can download from the Python Package Index) includes a
tests/ directory containing a normal test suite as well as supplemental test files which perform more comprehensive
verification.

1.5.1 The normal test suite

The normal test suite for webcolors aims for 100% coverage of code paths, but does not aim for 100% coverage of
possible color value inputs and outputs. Instead, it uses a small number of test values to routinely exercise various
functions.

The test values used in most test functions are chosen to provide, where applicable, at least one of each of the following
types of values:

• An endpoint of the acceptable range of values (i.e., #ffffff and/or #000000 for hexadecimal).

• A value beyond the high end of the acceptable range (i.e., greater than 255 in an integer triplet, or greater than
100% for a percentage triplet).

• A value beyond the low end of the acceptable range (i.e., less than 0 in an integer triplet, or less than 0% for a
percentage triplet).

• A “negative zero” value (-0 in an integer triplet, or -0% in a percentage triplet).

• An arbitrary value not from an endpoint of the acceptable range (usually #000080, chosen because the author
likes navy blue).

• A value which corresponds to a named color in CSS3/SVG but not in earlier standards (usually #daa520, which
is goldenrod in CSS3/SVG).

Since this covers the cases most likely to produce problems, this test suite provides good basic confidence in the
correctness of the tested functions. It runs on every commit to the repository, and on every release tag. You can see
the results of test runs online at Travis CI.

However, the normal test suite cannot guarantee that the color definitions included in webcolors correspond to those in
the relevant standards, and cannot provide guarantees of correct conversions for all possible values. For that, additional
tests are required.

18 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://travis-ci.org/ubernostrum/webcolors/


webcolors Documentation, Release 1.12

1.5.2 Full verification tests

These tests are contained in two files which are not executed during normal test runs: tests/definitions.py and
tests/full_colors.py. They are not run as part of the normal test suite, but are run prior to each release of webcol-
ors.

Verifying color definitions

The definitions.py test file verifies that the color definitions in webcolors are correct. It does this by downloading
the relevant standards documents as HTML, parsing out the color definitions in them, and comparing them to the
definitions in webcolors. That consists of:

• Parsing out the names and hexadecimal values of the 16 named colors in the HTML 4 standard, and checking
that the names and values in HTML4_NAMES_TO_HEX match.

• Parsing out the names and hexadecimal values of the 17 named colors in the CSS2.1 standard, and checking that
the names and values in CSS21_NAMES_TO_HEX match.

• Parsing out the names and hexadecimal and integer values of the 147 named colors in the CSS3 color mod-
ule (although the color set is taken from SVG, CSS3 provides both hexadecimal and integer values for
them, while the SVG standard provides only integer values), and checking that the names and values in
CSS3_NAMES_TO_HEX match, and that name_to_rgb() returns the correct integer values.

Fully verifying correctness of conversions

The full_colors.py test file exercises hex_to_rgb(), rgb_to_hex(), rgb_to_rgb_percent() and
rgb_percent_to_rgb() as fully as is practical.

For conversions between hexadecimal and integer rgb(), it generates all 16,777,216 possible color values for each
format in order (starting at #000000 and (0, 0, 0) and incrementing), and verifies that each one converts to the corre-
sponding value in the other format. Thus, it is possible to be confident that webcolors provides correct conversions
between all possible color values in those formats.

Testing the correctness of conversion to and from percentage rgb(), however, is more difficult, and a full test is not
provided, for two reasons:

1. Because percentage rgb() values can make use of floating-point values, and because standard floating-point
types in most common programming languages (Python included) are inherently imprecise, exact verification is
not possible.

2. The only rigorous definition of the format of a percentage value is in CSS2, which declares a percentage to be
“a <number> immediately followed by ‘%’”. The CSS2 definition of a number places no limit on the length
past the decimal point, and appears to be declaring any real number as a valid value, though percentage triplets
clip their inputs to the range 0.0-100.0. As the subset of reals in the range 0.0 to 100.0 is uncountably infinite,
testing all legal values is not possible on current hardware in any reasonable amount of time.

Since precise correctness and completeness are not achievable, webcolors instead aims to achieve consistency in
conversions. Specifically, the full_colors.py test generates all 16,777,216 integer rgb() triplets, and for each such
triplet t verifies that the following assertion holds:

t == rgb_percent_to_rgb(rgb_to_rgb_percent(t))

1.5.3 Running the tests

The standard test runner for webcolors is tox, which supports testing against multiple Python versions and executing a
variety of different test tasks. The source distribution of webcolors includes its tox.ini file. To run the tests, install tox

1.5. Conformance and testing 19

http://www.w3.org/TR/CSS2/syndata.html#percentage-units
http://www.w3.org/TR/CSS2/syndata.html#value-def-number
https://tox.readthedocs.io/


webcolors Documentation, Release 1.12

(pip install tox), then download and unpack a source distribution of webcolors from the Python Package Index.

To run the normal test suite against the complete set of supported Python versions:

$ tox

This requires that you have each supported version of Python (for webcolors 1.12, this is 2.7, 3.5, 3.6, and 3.7)
available. To test only against a specific version of Python, use the -e flag and pass the version to test. For example, to
test on Python 3.7:

$ tox -e py37

To run the full verification tests for definition correctness and conversions, specify the “release” test environment
instead (so named because these tests are usually run only prior to a new release of webcolors):

$ tox -e release

Note that this requires an internet connection, and is CPU-intensive.

1.6 Change log

This document lists the changes between each release of webcolors.

1.6.1 Version 1.12, released 2022-05-25

No bug fixes or new features.

Other changes

• Supported Python versions are now 3.7, 3.8, 3.9, and 3.10.

1.6.2 Version 1.11.1, released 2020-02-17

Bugs fixed

• Corrected an error regarding supported Python versions in the README file.

1.6.3 Version 1.11, released 2020-02-17

No bug fixes or new features.

Other changes

• Python 2 has reached the end of its support cycle from the Python core team; accordingly, Python 2 support is
dropped. Supported Python versions are now 3.5, 3.6, 3.7, and 3.8.

1.6.4 Version 1.10, released 2019-09-08

No bug fixes or new features.

20 Chapter 1. Documentation contents

https://pypi.org/project/webcolors/


webcolors Documentation, Release 1.12

Other changes

• Similar to the change in version 1.9 which normalized conversions to named colors for gray/grey to always
use the gray variant, the other named grays of CSS3 now normalize to the gray spelling. This affects the
following colors: darkgray/darkgrey, darkslategray/darkslategrey, dimgray/dimgrey, lightgray/lightgrey, light-
slategray/lightslategrey, slategray/slategrey.

1.6.5 Version 1.9.1, released 2019-06-07

Bugs fixed

• The __version__ attribute of the installed webcolors module, although not documented or referenced anywhere,
was accidentally not updated in the 1.9 release. It has now been updated (and now indicates 1.9.1).

1.6.6 Version 1.9, released 2019-06-01

No bug fixes.

New features

• Added a set of constants to use when referring to specifications that define color names.

Other changes

• When asked to provide a color name, using the CSS3/SVG set of names, for the hexadecimal value #808080, the
integer triplet rgb(128, 128, 128), or the percentage triplet rgb(50%, 50%, 50%), webcolors now always returns
u’gray’, never u’grey’. Previously, the behavior could be inconsistent as it depended on the Python version in
use; u’gray’ was picked because it was the spelling variant used in HTML 4, CSS1, and CSS2.

1.6.7 Version 1.8.1, released 2018-02-12

The 1.8.1 release is a repackaging of 1.8 to produce both source (.tar.gz) and binary (.whl) package formats, following
reports that the source-package-only release of 1.8 was causing installation issues for some users. See issue 6 in the
repository for details.

1.6.8 Version 1.8, released 2018-02-08

No bug fixes.

New features

• Added the IntegerRGB, PercentRGB, and HTML5SimpleColor named tuples.

1.6. Change log 21

https://github.com/ubernostrum/webcolors/issues/6
https://github.com/ubernostrum/webcolors/issues/6


webcolors Documentation, Release 1.12

Other changes

• Drop support for Python 3.3 (Python core team no longer maintains 3.3).

• Mark support for Python 3.6.

• The full verification tests now run correctly on Python 3.

1.6.9 Version 1.7, released 2016-11-25

No new features or bugfixes.

Other changes

• Drop support for Python 2.6 (Python core team no longer maintains 2.6).

• Mark support for Python 3.4.

• On Python 3, the use of str for all functions which take string arguments is now mandatory. Attempted use of
bytes will raise an exception. On Python 2, use of bytestrings is still permitted.

1.6.10 Version 1.5.1, released 2015-11-23

No new features.

Bug fixes

• Corrected multiple typos in documentation.

1.6.11 Version 1.5, released 2015-03-07

No bug fixes.

New features

• Python 3 support: webcolors now supports Python 3.3.

• Added HTML5 color algorithms.

Other changes

• Packaging improvements.

1.6.12 Version 1.4, released 2012-02-10

No new features.

Bugs fixed

• Integer and percentage rgb() triplets now normalized in accordance with CSS clipping rules.

22 Chapter 1. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes


webcolors Documentation, Release 1.12

Other changes

• Packaging fixes.

• Preparatory work for Python 3 support.

1.6.13 Version 1.3.1, released 2009-10-24

No new features or bugfixes.

Other changes

• Documentation expanded.

• Documentation now maintained using Sphinx.

1.6.14 Version 1.3, released 2009-05-08

No new features or bugfixes.

Other changes

• Documentation expanded.

1.6.15 Version 1.2, 2009-03-01

Bugs fixed:

• Corrected the download URL in the setup.py script.

1.6.16 Version 1.1, released 2008-12-19

No new features or bugfixes.

Other changes

• Documentation expanded.

1.6.17 Version 1.0, released 2008-10-28

Initial stable release of webcolors.

1.7 Frequently asked questions

The following notes answer common questions, and may be useful to you when using webcolors.

1.7. Frequently asked questions 23

http://www.sphinx-doc.org/


webcolors Documentation, Release 1.12

1.7.1 What versions of Python are supported?

The webcolors module supports and is tested on Python 3.7, 3.8, 3.9, and 3.10. As of the release of webcolors 1.12,
these are the only versions of Python receiving upstream security support from the Python core team.

1.7.2 How closely does this module follow the standards?

As closely as is practical (see below regarding floating-point values), within the supported formats; the webcolors
module was written with the relevant standards documents close at hand. See the conformance documentation for
details.

1.7.3 Why aren’t rgb_to_rgb_percent() and rgb_percent_to_rgb() precise?

This is due to limitations in the representation of floating-point numbers in programming languages. Python, like many
programming languages, uses IEEE floating-point, which is inherently imprecise for some values. This imprecision
only appears when converting between integer and percentage rgb() triplets, as in rgb_to_rgb_percent() and
rgb_percent_to_rgb().

To work around this, some common values (255, 128, 64, 32, 16 and 0) are handled as special cases, with hard-coded
precise results. For all other values, conversion to percentage rgb() triplet uses a standard Python float, rounding
the result to two decimal places.

See the conformance documentation for details on how this affects testing.

1.7.4 Why does webcolors prefer American spellings?

In CSS3, several color names are defined multiple times with identical values, to support both American and British
spelling variants for gray/grey. These colors are: darkgray/darkgrey, darkslategray/darkslategrey, dimgray/dimgrey,
gray/grey, lightgray/lightgrey, lightslategray/lightslategrey, slategray/slategrey.

Using any of the conversions from names to other formats (name_to_hex(), name_to_rgb(), or
name_to_rgb_percent()) will accept either spelling provided the spec argument is CSS3.

However, converting from other formats to a name requires picking one of these spellings. Since webcolors uses a
Python dict to store its name-to-value mappings, simply reversing those mappings risks inconsistency: swapping the
keys and values of a dict in Python depends on the key order, which varies from one version of Python to another
and in several supported Python versions is not guaranteed to be consistent and/or is documented as an implementation
detail not to be relied on. So webcolors must manually pick a spelling to normalize to, and chooses gray. This choice
was made for consistency with HTML 4, CSS1, and CSS2, each of which only allowed gray.

1.7.5 Why aren’t HSL values supported?

In the author’s experience, actual use of HSL values on the Web is extremely rare; the overwhelming majority of all
colors used on the Web are specified using sRGB, through hexadecimal color values or through integer or percentage
rgb() triplets. This decreases the importance of supporting the hsl() construct.

Additionally, Python already has the colorsys module in the standard library, which offers functions for converting
between RGB, HSL, HSV and YIQ color systems. If you need conversion to/from HSL or another color system, use
colorsys.

24 Chapter 1. Documentation contents

https://en.wikipedia.org/wiki/IEEE_754
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/colorsys.html#module-colorsys
https://docs.python.org/3/library/colorsys.html#module-colorsys


webcolors Documentation, Release 1.12

1.7.6 Why not use a more object-oriented design with classes for the colors?

Representing color values with Python classes would introduce overhead for no real gain. Real-world use cases tend to
involve working directly with the actual values, so settling on conventions for how to represent them as Python types,
and then offering a function-based interface, accomplishes everything needed without the additional indirection layer
of having to instantiate and serialize a color-wrapping object.

Keeping a function-based interface also maintains consistency with Python’s built-in colorsys module which has
the same style of interface for converting amongst color spaces.

Note that if an object-oriented interface is desired, the third-party colormath module does have a class-based interface
(and rightly so, as it offers a wider range of color representation and manipulation options than webcolors).

1.7.7 How am I allowed to use this module?

The webcolors module is distributed under a three-clause BSD license. This is an open-source license which grants
you broad freedom to use, redistribute, modify and distribute modified versions of webcolors. For details, see the file
LICENSE in the source distribution of webcolors.

1.7.8 I found a bug or want to make an improvement!

The canonical development repository for webcolors is online at <https://github.com/ubernostrum/webcolors>. Issues
and pull requests can both be filed there.

See also:

• The sRGB color space

• HTML 4: Colors

• CSS 1: Color units

• CSS 2: Colors

• CSS 3 color module

• HTML5: Colors

1.7. Frequently asked questions 25

https://docs.python.org/3/library/colorsys.html#module-colorsys
https://pypi.org/project/colormath/
http://opensource.org/licenses/BSD-3-Clause
https://github.com/ubernostrum/webcolors
http://www.w3.org/Graphics/Color/sRGB
http://www.w3.org/TR/html401/types.html#h-6.5
http://www.w3.org/TR/CSS1/#color-units
http://www.w3.org/TR/CSS2/syndata.html#color-units
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/html5/infrastructure.html#colors


webcolors Documentation, Release 1.12

26 Chapter 1. Documentation contents



Python Module Index

w
webcolors, 7

27



webcolors Documentation, Release 1.12

28 Python Module Index



Index

B
blue (webcolors.HTML5SimpleColor attribute), 9
blue (webcolors.IntegerRGB attribute), 8
blue (webcolors.PercentRGB attribute), 8

C
CSS2 (in module webcolors), 9
CSS21 (in module webcolors), 9
CSS21_HEX_TO_NAMES (in module webcolors), 10
CSS21_NAMES_TO_HEX (in module webcolors), 9
CSS2_HEX_TO_NAMES (in module webcolors), 10
CSS2_NAMES_TO_HEX (in module webcolors), 9
CSS3 (in module webcolors), 9
CSS3_HEX_TO_NAMES (in module webcolors), 10
CSS3_NAMES_TO_HEX (in module webcolors), 9

G
green (webcolors.HTML5SimpleColor attribute), 9
green (webcolors.IntegerRGB attribute), 8
green (webcolors.PercentRGB attribute), 8

H
hex_to_name() (in module webcolors), 13
hex_to_rgb() (in module webcolors), 13
hex_to_rgb_percent() (in module webcolors), 13
HTML4 (in module webcolors), 9
HTML4_HEX_TO_NAMES (in module webcolors), 10
HTML4_NAMES_TO_HEX (in module webcolors), 9
html5_parse_legacy_color() (in module web-

colors), 17
html5_parse_simple_color() (in module web-

colors), 17
html5_serialize_simple_color() (in module

webcolors), 17
HTML5SimpleColor (class in webcolors), 8

I
IntegerRGB (class in webcolors), 8

N
name_to_hex() (in module webcolors), 11
name_to_rgb() (in module webcolors), 12
name_to_rgb_percent() (in module webcolors),

12
normalize_hex() (in module webcolors), 10
normalize_integer_triplet() (in module web-

colors), 11
normalize_percent_triplet() (in module web-

colors), 11

P
PercentRGB (class in webcolors), 8

R
red (webcolors.HTML5SimpleColor attribute), 8
red (webcolors.IntegerRGB attribute), 8
red (webcolors.PercentRGB attribute), 8
rgb_percent_to_hex() (in module webcolors), 16
rgb_percent_to_name() (in module webcolors),

15
rgb_percent_to_rgb() (in module webcolors), 16
rgb_to_hex() (in module webcolors), 14
rgb_to_name() (in module webcolors), 14
rgb_to_rgb_percent() (in module webcolors), 15

W
webcolors (module), 7

29


	Documentation contents
	Python Module Index
	Index

