

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	webcolors 1.5 documentation

webcolors

This module provides utility functions for working with the color
names and color value formats defined by the HTML and CSS
specifications for use in documents on the Web.

Support is included for normalizing and converting between the
following formats (RGB colorspace only; conversion to/from HSL can be
handled by the colorsys module in the Python standard library):

	Specification-defined color names

	Six-digit hexadecimal

	Three-digit hexadecimal

	Integer rgb() triplet

	Percentage rgb() triplet

For example:

>>> import webcolors
>>> webcolors.hex_to_name(u'#daa520')
u'goldenrod'

Implementations are also provided for the HTML5 color parsing and
serialization algorithms. For example, parsing the infamous
“chucknorris” string into an rgb() triplet:

>>> import webcolors
>>> webcolors.html5_parse_legacy_color(u'chucknorris')
(192, 0, 0)

Documentation contents

	Installation guide

	An overview of colors on the Web

	Normalization and conventions

	Module contents

	Conformance and testing

	Frequently asked questions

See also

	The sRGB color space [http://www.w3.org/Graphics/Color/sRGB]

	HTML 4: Colors [http://www.w3.org/TR/html401/types.html#h-6.5]

	CSS 1: Color units [http://www.w3.org/TR/CSS1/#color-units]

	CSS 2: Colors [http://www.w3.org/TR/CSS2/syndata.html#color-units]

	CSS 3 color module [http://www.w3.org/TR/css3-color/]

	HTML5: Colors [http://www.w3.org/TR/html5/infrastructure.html#colors]

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	webcolors 1.5 documentation

Installation guide

The webcolors module has no external dependencies other than
Python itself. It’s officially tested and supported on the following
versions of Python:

	Python 2.6

	Python 2.7

	Python 3.3

	Python 3.4

Normal installation

The preferred method of installing webcolors is via pip, the
standard Python package-installation tool. If you don’t have pip,
instructions are available for how to obtain and install it [https://pip.pypa.io/en/latest/installing.html].

Once you have pip, simply type:

pip install webcolors

Manual installation

It’s also possible to install webcolors manually. To do so, obtain
the latest packaged version from the listing on the Python Package
Index [https://pypi.python.org/pypi/webcolors/]. Unpack the
.tar.gz file, and run:

python setup.py install

Once you’ve installed webcolors, you can verify successful
installation by opening a Python interpreter and typing import
webcolors.

If the installation was successful, you’ll simply get a fresh Python
prompt. If you instead see an ImportError, check the configuration
of your install tools and your Python import path to ensure
webcolors installed into a location Python can import from.

Installing from a source checkout

The development repository for webcolors is at
<https://github.com/ubernostrum/webcolors>. Presuming you have git [http://git-scm.com/] installed, you can obtain a copy of the
repository by typing:

git clone https://github.com/ubernostrum/webcolors.git

From there, you can use normal git commands to check out the specific
revision you want, and install it using python setup.py install.

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	webcolors 1.5 documentation

An overview of colors on the Web

Colors on the Web are typically specified in the sRGB color space [http://www.w3.org/Graphics/Color/sRGB],
where each color is made up of a red component, a green component and
a blue component. This maps to the red, green and blue components of
the pixels on a computer display, and to the three sets of cone cells
in the human eye, which respond to (roughly) the wavelengths of light
associated with red, green and blue.

On the Web, sRGB colors are specified in formats which describe the
color as a 24-bit integer, where the first 8 bits provide the red
value, the second 8 bits the green value and the final 8 bits the blue
value. This gives a total space of 256 * 256 * 256 or 16,777,216
unique colors, though due to differences in display technology not all
of these colors may be clearly distinguishable on any given physical
display.

HTML 4

HTML 4 defined two ways to specify sRGB colors [http://www.w3.org/TR/html401/types.html#h-6.5]:

	The character # followed by three pairs of hexdecimal digits,
specifying values for red, green and blue components in that order;
for example, #0099cc.

	A set of predefined color names which correspond to specific
hexadecimal values; for example, blue. HTML 4 defines sixteen
such colors.

CSS 1

In its description of color units [http://www.w3.org/TR/CSS1/#color-units], CSS 1 added
three new ways to specify sRGB colors:

	The character # followed by three hexadecimal digits, which is
expanded into three hexadecimal pairs by repeating each digit; thus
#09c is equivalent to #0099cc.

	The string rgb, followed by parentheses, between which are three
base-10 integers in the range 0..255, which are taken
to be the values of the red, green and blue components in that
order; for example, rgb(0, 153, 204).

	The same as above, except using percentages instead of numeric
values; for example, rgb(0%, 60%, 80%).

CSS 1 also suggested a set of sixteen color names. These names were
identical to the set defined in HTML 4, but CSS 1 did not provide
definitions of their values and stated that they were taken from “the
Windows VGA palette”.

CSS 2

In its section on colors [http://www.w3.org/TR/CSS2/syndata.html#color-units], CSS 2 allowed the same methods of
specifying colors as CSS 1, and defined and provided values for
sixteen named colors, identical to the set found in HTML 4.

CSS 2 also specified a list of names of system colors [http://www.w3.org/TR/CSS2/ui.html#system-colors]. These had no
fixed color values, but would take on values from the operating system
or other user interface, and allowed elements to be styled using the
same colors as the surrounding user interface. These names are
deprecated as of CSS 3.

The CSS 2.1 revision did not add any new methods of specifying sRGB
colors, but did define one additional named color [http://www.w3.org/TR/CSS21/changes.html#q2]: orange.

CSS 3

The CSS 3 color module [http://www.w3.org/TR/css3-color/] adds one new way to specify colors:

	A hue-saturation-lightness triplet (HSL), using the construct
hsl().

CSS 3 also adds support for variable opacity of colors, by allowing
the specification of alpha-channel information through the rgba()
and hsla() constructs. These are used similarly to the rgb()
and hsl() constructs, except a fourth value is supplied indicating
the level of opacity from 0.0 (completely transparent) to 1.0
(completely opaque). Though not technically a color, the keyword
transparent is also made available in lieu of a color value, and
corresponds to rgba(0,0,0,0).

CSS 3 also defines a new set of 147 color names. This set is taken
directly from the named colors defined for SVG (Scalable Vector
Graphics) [http://www.w3.org/TR/SVG11/types.html#ColorKeywords] markup, and is a superset of the named colors defined in
CSS 2.1.

HTML5

HTML5 exists in two forms: a living document maintained by WHATWG, and
a W3C Recommendation. The two HTML5 documents, as of this writing,
share a common definition of color values and parsing, and formalize
the parsing and serialization of colors according to prior standards
and real-world implementations in Web browsers.

HTML5 does not introduce any new methods of specifying colors, but
does simplify the description of colors and introduce useful
terminology.

	A set of three 8-bit numbers representing the red, blue and green
components of an sRGB color is termed a “simple color”.

	A seven-character string which begins with the character #,
followed by six ASCII hex digits (i.e., A-Fa-f0-9), representing
the red, green and blue components of an sRGB color, is a “valid
simple color”.

	A valid simple color expressed with only lowercase ASCII hex digits
(i.e., a-f0-9) is a “valid lowercase simple color”.

HTML5 provides three algorithms related to colors:

	An algorithm for parsing simple color values, which works on any
string that is a valid simple color as defined above.

	An algorithm for serializing simple color values, which will always
produce a valid lowercase simple color.

	A legacy color-parsing algorithm, which will yield a valid simple
color from a variety of inputs, including inputs which are valid
simple colors, inputs which are valid for formats from other
standards, and certain types of “junk” inputs which were common in
real-world documents.

The HTML5 legacy parsing algorithm does not support the non-color
keyword transparent from CSS 3 and will produce an error for that
input. It also does not recognize the CSS 2 “system color” keywords;
it will convert each such keyword to simple color, consistently, but
in a way which does not follow CSS 2’s definitions of these keywords
(which itself was system- and configuration-dependent).

The implementations in this module are based on the definitions and
algorithms of the W3C HTML5 Recommendation’s section on colors [http://www.w3.org/TR/html5/infrastructure.html#colors].

What this module supports

The webcolors module supports the following methods of specifying
sRGB colors, and conversions between them:

	Six-digit hexadecimal.

	Three-digit hexadecimal.

	Integer rgb() triplet.

	Percentage rgb() triplet.

	Varying selections of predefined color names.

The webcolors module does not support:

	The CSS 1 named colors, which did not have defined values.

	The CSS 2 system colors, which did not have fixed values.

	The transparent keyword, which denotes an effective lack of
color.

	Opacity/alpha-channel information specified via rgba() triplets.

	Colors specified in the HSL color space, via hsl() or hsla()
triplets.

If you need to convert between sRGB-specified colors and HSL-specified
colors, or colors specified via other means, consult the colorsys
module [http://docs.python.org/library/colorsys.html] in the Python standard library, which can perform conversions
amongst several common color systems.

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	webcolors 1.5 documentation

Normalization and conventions

Since the various formats used to specify colors in Web documents do
not always map cleanly to Python data types, and some variation is
permitted in how to use each format in a Web document, webcolors
applies a set of conventions for representing color names and values,
and for normalizing them.

Python string types

The webcolors module is written to be compatible with both Python
2 and Python 3, which have different approaches to strings:

	On Python 2, a sequence of bytes in a particular encoding (a “byte
string”) is represented by the type str , and Unicode strings
are represented by the type unicode. Promiscuous mixing of
str and unicode is possible in Python 2, but not recommended
as it is a frequent source of bugs.

	On Python 3, a sequence of bytes in a particular encoding is
represented by the type bytes, and Unicode strings are
represented by the type str. Promiscuous mixing of str and
bytes is not permitted in Python 3, and will usually raise
exceptions.

The approach to string types in webcolors is as follows:

	On Python 3, use of Unicode strings – str – is mandatory for
all string arguments to functions in webcolors. Use of bytes
values is forbidden.

	All mappings from color names to hexadecimal values (and vice versa)
are dictionaries whose keys and values are Unicode strings (str
on Python 3 and unicode on Python 2). This permits promiscuous
use of byte strings on Python 2, but ensures that results will be
Unicode strings.

	All functions whose return values include strings will use Unicode
strings (unicode on Python 2 and str on Python 3).

	All functions whose arguments include string values, except for
the HTML5 color algorithms (see below), will accept a sequence of
bytes (str) on Python 2, but will convert to Unicode strings
(unicode) for output.

Because the HTML5 Recommendation specifies its color algorithms in
terms of Unicode strings only (and in some cases, requires exact
identification of Unicode code points to determine behavior), the
following constraint applies to the functions implementing these
algorithms:

	Any string arguments must be Unicode strings (unicode on
Python 2 or str on Python 3). Use of str on Python 2 or
bytes on Python 3 will raise a ValueError.

Use of Unicode strings whenever possible is strongly preferred. To
encourage this, all documentation for webcolors uses the u
prefix for string literals. Use of the u prefix is required on
Python 2 to mark a string literal as Unicode; on Pyhon 3.3 and later,
use is permitted but not necessary (as all un-prefixed string literals
on Python 3 are Unicode strings).

Hexadecimal color values

For colors specified via hexadecimal values, webcolors will accept
strings in the following formats:

	The character # followed by three hexadecimal digits, where
digits A-F may be upper- or lowercase.

	The character # followed by six hexadecimal digits, where
digits A-F may be upper- or lowercase (i.e., what HTML5 designates a
“valid simple color” when all digits are uppercase, and a “valid
lowercase simple color” when all digits are lowercase).

For output which consists of a color specified via hexadecimal values,
and for functions which perform intermediate conversion to hexadecimal
before returning a result in another format, webcolors always
normalizes such values to a string in the following format:

	The character # followed by six hexadecimal digits, with digits
A-F forced to lowercase (what HTML5 designates a “valid lowercase
simple color”).

The function normalize_hex() can be used to perform
this normalization manually if desired.

Integer and percentage rgb() triplets

Functions which work with integer rgb() triplets accept and return
them as a 3-tuple of Python int. Functions which work with
percentage rgb() triplets accept them as 3-tuple of Python strings
(either str or unicode is permitted on Python 2; only str
is permitted on Python 3) and return them as a 3-tuple of Python
Unicode strings (unicode or str depending on Python version).

Internally, Python float is used in some conversions to and from
the triplet representations; for each function which may have the
precision of its results affected by this, a note is provided in the
documentation.

For colors specified via rgb() triplets, values contained in the
triplets will be normalized via clipping in accordance with CSS:

	Integer values less than 0 will be normalized to 0, and percentage
values less than 0% will be normalized to 0%.

	Integer values greater than 255 will be normalized to 255, and
percentage values greater than 100% will be normalized to 100%.

	The “negative zero” values -0 and -0% will be normalized to 0 and
0%, respectively.

The functions normalize_integer_triplet() and
normalize_percent_triplet() can be used to
perform this normalization manually if desired.

Color names

For colors specified via predefined names, webcolors will accept
strings containing names case-insensitively, so long as they contain
no spaces or non-alphabetic characters. Thus, for example,
u'AliceBlue' and u'aliceblue' are both accepted, and both will
refer to the same color (namely, rgb(240, 248, 255)).

For output which consists of a color name, and for functions which
perform intermediate conversion to a predefined name before returning
a result in another format, webcolors always normalizes such
values to be entirely lowercase.

Identifying sets of named colors

For purposes of identifying the specification from which to draw the
selection of defined color names, webcolors recognizes the
following strings as identifiers:

	'html4'

	The HTML 4 named colors.

	'css2'

	The CSS 2 named colors.

	'css21'

	The CSS 2.1 named colors.

	'css3'

	The CSS 3/SVG named colors. For all functions for which the set of
color names is relevant, this is the default set used.

The CSS 1 named colors are not represented here, as CSS 1 merely
“suggested” a set of color names, and declined to provide values for
them. The CSS 2 “system colors” are also not represented here, as they
had no fixed defined values and are now deprecated.

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	webcolors 1.5 documentation

Module contents

The contents of the webcolors module fall into four categories:

	Constants which provide mappings between color names and values.

	Normalization functions which sanitize input in various formats
prior to conversion or output.

	Conversion functions between each method of specifying colors.

	Implementations of the color parsing and serialization algorithms
in HTML5.

See the documentation regarding conventions for
information regarding the types and representation of various color
formats in webcolors.

All conversion functions which involve color names take an optional
argument to determine which specification to draw color names
from. See the list of specification identifiers for a list of valid values.

All conversion functions, when faced with identifiably invalid
hexadecimal color values, or with a request to name a color which has
no name in the requested specification, or with an invalid
specification identifier, will raise ValueError.

In the documentation below, “Unicode string” means the Unicode string
type of the Python version being used; on Python 3 this is str and
on Python 2 it is unicode. See the documentation on use of
Python string types for details.

Constants

The following constants are available for direct use in mapping from
color names to values, although it is strongly recommended to use one
of the normalizing conversion functions instead.

Mappings from names to hexadecimal values

	
webcolors.HTML4_NAMES_TO_HEX

	A dictionary whose keys are the normalized names of the sixteen
named HTML 4 colors, and whose values are the normalized
hexadecimal values of those colors.

	
webcolors.CSS2_NAMES_TO_HEX

	An alias for HTML4_NAMES_TO_HEX, as CSS 2
defined the same set of colors.

	
webcolors.CSS21_NAMES_TO_HEX

	A dictionary whose keys are the normalized names of the seventeen
named CSS 2.1 colors, and whose values are the normalized
hexadecimal values of those colors (sixteen of these are identical
to HTML 4 and CSS 2; the seventeenth color is orange, added in
CSS 2.1).

	
webcolors.CSS3_NAMES_TO_HEX

	A dictionary whose keys are the normalized names of the 147 named
CSS 3 colors, and whose values are the normalized hexadecimal
values of those colors. These colors are also identical to the 147
named colors of SVG.

Mappings from hexadecimal values to names

	
webcolors.HTML4_HEX_TO_NAMES

	A dictionary whose keys are the normalized hexadecimal values of
the sixteen named HTML 4 colors, and whose values are the
corresponding normalized names.

	
webcolors.CSS2_HEX_TO_NAMES

	An alias for HTML4_HEX_TO_NAMES.

	
webcolors.CSS21_HEX_TO_NAMES

	A dictionary whose keys are the normalized hexadecimal values of
the seventeen named CSS 2.1 colors, and whose values are the
corresponding normalized names.

	
webcolors.CSS3_HEX_TO_NAMES

	A dictionary whose keys are the normalized hexadecimal values of
the 147 names CSS 3 colors, and whose values are the corresponding
normalized names.

The canonical names of these constants are as listed above, entirely
in uppercase. For backwards compatibility with older versions of
webcolors, aliases are provided whose names are entirely lowercase
(for example, html4_names_to_hex).

Normalization functions

	
webcolors.normalize_hex(hex_value)

	Normalize a hexadecimal color value to a string consisting of the
character # followed by six lowercase hexadecimal digits (what
HTML5 terms a “valid lowercase simple color”).

If the supplied value cannot be interpreted as a hexadecimal color
value, ValueError is raised. See the conventions used by
this module for information on acceptable formats
for hexadecimal values.

Examples:

>>> normalize_hex(u'#0099cc')
'#0099cc'
>>> normalize_hex(u'#0099CC')
'#0099cc'
>>> normalize_hex(u'#09c')
'#0099cc'
>>> normalize_hex(u'#09C')
'#0099cc'
>>> normalize_hex(u'#0099gg')
Traceback (most recent call last):
 ...
ValueError: '#0099gg' is not a valid hexadecimal color value.
>>> normalize_hex(u'0099cc')
Traceback (most recent call last):
 ...
ValueError: '0099cc' is not a valid hexadecimal color value.

	Parameters:	hex_value (str) – The hexadecimal color value to normalize.

	Return type:	Unicode string

	
webcolors.normalize_integer_triplet(rgb_triplet)

	Normalize an integer rgb() triplet so that all values are
within the range 0..255.

Examples:

>>> normalize_integer_triplet((128, 128, 128))
(128, 128, 128)
>>> normalize_integer_triplet((0, 0, 0))
(0, 0, 0)
>>> normalize_integer_triplet((255, 255, 255))
(255, 255, 255)
>>> normalize_integer_triplet((270, -20, -0))
(255, 0, 0)

	Parameters:	rgb_triplet (3-tuple of int) – The integer rgb() triplet to normalize.

	Return type:	3-tuple of int

	
webcolors.normalize_percent_triplet(rgb_triplet)

	Normalize a percentage rgb() triplet to that all values are
within the range 0%..100%.

Examples:

>>> normalize_percent_triplet((u'50%', u'50%', u'50%'))
(u'50%', u'50%', u'50%')
>>> normalize_percent_triplet((u'0%', u'100%', u'0%'))
(u'0%', u'100%', u'0%')
>>> normalize_percent_triplet((u'-10%', u'-0%', u'500%'))
(u'0%', u'0%', u'100%')

	Parameters:	rgb_triplet (3-tuple of str) – The percentage rgb() triplet to normalize.

	Return type:	3-tuple of Unicode string

Conversions from color names to other formats

	
webcolors.name_to_hex(name, spec=u'css3')

	Convert a color name to a normalized hexadecimal color value.

The color name will be normalized to lower-case before being looked
up.

Examples:

>>> name_to_hex(u'white')
u'#ffffff'
>>> name_to_hex(u'navy')
u'#000080'
>>> name_to_hex(u'goldenrod')
u'#daa520'
>>> name_to_hex(u'goldenrod', spec=u'html4')
Traceback (most recent call last):
 ...
ValueError: 'goldenrod' is not defined as a named color in html4.

	Parameters:	
	name (str) – The color name to convert.

	spec (str) – The specification from which to draw the list of color
names; valid values are 'html4', 'css2', 'css21' and
'css3'. Default is 'css3'.

	Return type:	Unicode string

	
webcolors.name_to_rgb(name, spec=u'css3')

	Convert a color name to a 3-tuple of integers suitable for use in
an rgb() triplet specifying that color.

The color name will be normalized to lower-case before being looked
up.

Examples:

>>> name_to_rgb(u'white')
(255, 255, 255)
>>> name_to_rgb(u'navy')
(0, 0, 128)
>>> name_to_rgb(u'goldenrod')
(218, 165, 32)

	Parameters:	
	name (str) – The color name to convert.

	spec (str) – The specification from which to draw the list of color
names; valid values are 'html4', 'css2', 'css21' and
'css3'. Default is 'css3'.

	Return type:	3-tuple of int

	
webcolors.name_to_rgb_percent(name, spec=u'css3')

	Convert a color name to a 3-tuple of percentages suitable for use
in an rgb() triplet specifying that color.

The color name will be normalized to lower-case before being looked
up.

Examples:

>>> name_to_rgb_percent(u'white')
(u'100%', u'100%', u'100%')
>>> name_to_rgb_percent(u'navy')
(u'0%', u'0%', u'50%')
>>> name_to_rgb_percent(u'goldenrod')
(u'85.49%', u'64.71%', u'12.5%')

	Parameters:	
	name (str) – The color name to convert.

	spec (str) – The specification from which to draw the list of color
names; valid values are 'html4', 'css2', 'css21' and
'css3'. Default is 'css3'.

	Return type:	3-tuple of Unicode string

Conversion from hexadecimal color values to other formats

	
webcolors.hex_to_name(hex_value, spec=u'css3')

	Convert a hexadecimal color value to its corresponding normalized
color name, if any such name exists.

The hexadecimal value will be normalized before being looked up.

Examples:

>>> hex_to_name(u'#ffffff')
u'white'
>>> hex_to_name(u'#fff')
u'white'
>>> hex_to_name(u'#000080')
u'navy'
>>> hex_to_name(u'#daa520')
u'goldenrod'
>>> hex_to_name(u'#daa520', spec=u'html4')
Traceback (most recent call last):
 ...
ValueError: '#daa520' has no defined color name in html4.

	Parameters:	
	hex_value (str) – The hexadecimal color value to convert.

	spec (str) – The specification from which to draw the list of color
names; valid values are 'html4', 'css2', 'css21' and
'css3'. Default is 'css3'.

	Return type:	Unicode string

	
webcolors.hex_to_rgb(hex_value)

	Convert a hexadecimal color value to a 3-tuple of integers suitable
for use in an rgb() triplet specifying that color.

The hexadecimal value will be normalized before being converted.

Examples:

>>> hex_to_rgb(u'#fff')
(255, 255, 255)
>>> hex_to_rgb(u'#000080')
(0, 0, 128)

	Parameters:	hex_value (str) – The hexadecimal color value to convert.

	Return type:	3-tuple of int

	
webcolors.hex_to_rgb_percent(hex_value)

	Convert a hexadecimal color value to a 3-tuple of percentages
suitable for use in an rgb() triplet representing that color.

The hexadecimal value will be normalized before being converted.

Examples:

>>> hex_to_rgb_percent(u'#ffffff')
(u'100%', u'100%', u'100%')
>>> hex_to_rgb_percent(u'#000080')
(u'0%', u'0%', u'50%')

	Parameters:	hex_value (str) – The hexadecimal color value to convert.

	Return type:	3-tuple of Unicode string

Conversions from integer rgb() triplets to other formats

	
webcolors.rgb_to_name(rgb_triplet, spec=u'css3')

	Convert a 3-tuple of integers, suitable for use in an rgb()
color triplet, to its corresponding normalized color name, if any
such name exists.

To determine the name, the triplet will be converted to a
normalized hexadecimal value.

Examples:

>>> rgb_to_name((255, 255, 255))
u'white'
>>> rgb_to_name((0, 0, 128))
u'navy'

	Parameters:	
	rgb_triplet (3-tuple of int) – The rgb() triplet

	spec (str) – The specification from which to draw the list of color
names; valid values are 'html4', 'css2', 'css21' and
'css3'. Default is 'css3'.

	Return type:	Unicode string

	
webcolors.rgb_to_hex(rgb_triplet)

	Convert a 3-tuple of integers, suitable for use in an rgb()
color triplet, to a normalized hexadecimal value for that color.

Examples:

>>> rgb_to_hex((255, 255, 255))
u'#ffffff'
>>> rgb_to_hex((0, 0, 128))
u'#000080'

	Parameters:	rgb_triplet (3-tuple of int) – The rgb() triplet.

	Return type:	Unicode string

	
webcolors.rgb_to_rgb_percent(rgb_triplet)

	Convert a 3-tuple of integers, suitable for use in an rgb()
color triplet, to a 3-tuple of percentages suitable for use in
representing that color.

This function makes some trade-offs in terms of the accuracy of the
final representation; for some common integer values, special-case
logic is used to ensure a precise result (e.g., integer 128 will
always convert to ‘50%’, integer 32 will always convert to
‘12.5%’), but for all other values a standard Python float is
used and rounded to two decimal places, which may result in a loss
of precision for some values.

Examples:

>>> rgb_to_rgb_percent((255, 255, 255))
(u'100%', u'100%', u'100%')
>>> rgb_to_rgb_percent((0, 0, 128))
(u'0%', u'0%', u'50%')
>>> rgb_to_rgb_percent((218, 165, 32))
(u'85.49%', u'64.71%', u'12.5%')

	Parameters:	rgb_triplet (3-tuple of int) – The rgb() triplet.

	Return type:	3-tuple of Unicode string

Conversions from percentage rgb() triplets to other formats

	
webcolors.rgb_percent_to_name(rgb_percent_triplet, spec=u'css3')

	Convert a 3-tuple of percentages, suitable for use in an rgb()
color triplet, to its corresponding normalized color name, if any
such name exists.

To determine the name, the triplet will be converted to a
normalized hexadecimal value.

Examples:

>>> rgb_percent_to_name((u'100%', u'100%', u'100%'))
u'white'
>>> rgb_percent_to_name((u'0%', u'0%', u'50%'))
u'navy'
>>> rgb_percent_to_name((u'85.49%', u'64.71%', u'12.5%'))
u'goldenrod'

	Parameters:	
	rgb_percent_triplet (3-tuple of str) – The rgb() triplet.

	spec (str) – The specification from which to draw the list of color
names; valid values are 'html4', 'css2', 'css21'
and 'css3'. Default is 'css3'.

	Return type:	Unicode string

	
webcolors.rgb_percent_to_hex(rgb_percent_triplet)

	Convert a 3-tuple of percentages, suitable for use in an rgb()
color triplet, to a normalized hexadecimal color value for that
color.

Examples:

>>> rgb_percent_to_hex((u'100%', u'100%', u'0%'))
u'#ffff00'
>>> rgb_percent_to_hex((u'0%', u'0%', u'50%'))
u'#000080'
>>> rgb_percent_to_hex((u'85.49%', u'64.71%', u'12.5%'))
u'#daa520'

	Parameters:	rgb_percent_triplet (3-tuple of str) – The rgb() triplet.

	Return type:	str

	
webcolors.rgb_percent_to_rgb(rgb_percent_triplet)

	Convert a 3-tuple of percentages, suitable for use in an rgb()
color triplet, to a 3-tuple of integers suitable for use in
representing that color.

Some precision may be lost in this conversion. See the note
regarding precision for rgb_to_rgb_percent() for
details.

Examples:

>>> rgb_percent_to_rgb((u'100%', u'100%', u'100%'))
(255, 255, 255)
>>> rgb_percent_to_rgb((u'0%', u'0%', u'50%'))
(0, 0, 128)
>>> rgb_percent_to_rgb((u'85.49%', u'64.71%', u'12.5%'))
(218, 165, 32)

	Parameters:	rgb_percent_triplet (3-tuple of str) – The rgb() triplet.

	Return type:	3-tuple of int

HTML5 color algorithms

Warning

There are two versions of the HTML5 standard. Although
they have common origins and are extremely similar, one is a living
document (maintained by WHATWG) and the other is a W3C
Recommendation. The functions documented below implement the HTML5
color algorithms as given in section 2.4.6 of the W3C HTML5
Recommendation [http://www.w3.org/TR/html5/infrastructure.html#colors].

	
webcolors.html5_parse_simple_color(input)

	Apply the HTML5 simple color parsing algorithm.

Note that input must be a Unicode string – on Python 2,
bytestrings will not be accepted.

Examples:

>>> html5_parse_simple_color(u'#ffffff')
(255, 255, 255)
>>> html5_parse_simple_color(u'#fff')
Traceback (most recent call last):
 ...
ValueError: An HTML5 simple color must be a string exactly seven characters long.

	Parameters:	input (seven-character str on Python 3, unicode on
Python 2, which must consist of exactly the character #
followed by six hexadecimal digits) – The color to parse.

	Return type:	3-tuple of int, each in the range 0..255.

	
webcolors.html5_serialize_simple_color(simple_color)

	Apply the HTML5 simple color serialization algorithm.

Examples:

>>> html5_serialize_simple_color((0, 0, 0))
u'#000000'
>>> html5_serialize_simple_color((255, 255, 255))
u'#ffffff'

	Parameters:	simple_color (3-tuple of int, each in the range 0..255) – The color to serialize.

	Return type:	A valid lowercase simple color, which is a Unicode string
exactly seven characters long, beginning with # and followed
by six lowercase hexadecimal digits.

	
webcolors.html5_parse_legacy_color(input)

	Apply the HTML5 legacy color parsing algorithm.

Note that, since this algorithm is intended to handle many types of
malformed color values present in real-world Web documents, it is
extremely forgiving of input, but the results of parsing inputs
with high levels of “junk” (i.e., text other than a color value)
may be surprising.

Note also that input must be a Unicode string – on Python 2,
bytestrings will not be accepted.

Examples:

>>> html5_parse_legacy_color(u'black')
(0, 0, 0)
>>> html5_parse_legacy_color(u'chucknorris')
(192, 0, 0)
>>> html5_parse_legacy_color(u'Window')
(0, 13, 0)

	Parameters:	input (str on Python 3, unicode on Python 2) – The color to parse.

	Return type:	3-tuple of int, each in the range 0..255

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	webcolors 1.5 documentation

Conformance and testing

Much of the behavior of webcolors is dictated by the relevant Web
standards, which define the acceptable color formats, how to determine
valid values for each format and the values corresponding to defined
color names. Maintaining correct conversions and conformance to those
standards is crucial.

The normal test suite

The normal test suite for webcolors – that is, the set of unit
tests which will execute using standard Python test runners – aims
for 100% code coverage, but does not aim for 100% coverage of
possible color value inputs and outputs. Instead, it uses a small
number of test values to routinely exercise various functions.

The test values used in most test functions are chosen to provide,
where applicable, at least one of each of the following types of
values:

	An endpoint of the acceptable range of values (i.e., #ffffff
and/or #000000 for hexadecimal).

	A value beyond the high end of the acceptable range (i.e., greater
than 255 in an integer triplet, or greater than 100% for a
percentage triplet).

	A value beyond the low end of the acceptable range (i.e., less than
0 in an integer triplet, or less than 0% for a percentage triplet).

	A “negative zero” value (-0 in an integer triplet, or -0% in
a percentage triplet).

	An arbitrary value not from an endpoint of the acceptable range
(usually #000080, chosen because the author likes navy blue).

	A value which corresponds to a named color in CSS 3/SVG but not in
earlier standards (usually #daa520, which is goldenrod in
CSS 3/SVG).

Since this covers the cases most likely to produce problems, it
provides good basic confidence in the correctness of the tested
functions.

However, the normal test suite cannot guarantee that the color
definitions included in webcolors correspond to those in the
relevant standards, and cannot provide guarantees of correct
conversions for all possible values. For that, additional tests are
required.

Those tests are contained in two files in the source distribution,
which are not executed during normal test runs:
tests/definitions.py and tests/full_colors.py.

Verifying color definitions

The definitions test file verifies that the color definitions in
webcolors are correct. It does this by retrieving the relevant
standards documents as HTML, parsing out the color definitions in
them, and comparing them to the definitions in webcolors. That
consists of:

	Parsing out the names and hexadecimal values of the 16 named colors
in the HTML 4 standard, and checking that the names and values in
HTML4_NAMES_TO_HEX match.

	Parsing out the names and hexadecimal values of the 17 named colors
in the CSS 2.1 standard, and checking that the names and values in
CSS21_NAMES_TO_HEX match.

	Parsing out the names and hexadecimal and integer values of the 147
named colors in the CSS 3 color module (although the color set is
taken from SVG, CSS 3 provides both hexadecimal and integer values
for them, while the SVG standard provides only integer values), and
checking that the names and values in
CSS3_NAMES_TO_HEX match, and that
name_to_rgb() returns the correct integer values.

The definitions file can be run standalone (i.e., python
tests/definitions.py) to execute these tests, but it does require an
internet connection (to retrieve the standards documents) and requires
the BeautifulSoup library [http://www.crummy.com/software/BeautifulSoup/] for HTML parsing.

Fully verifying correctness of conversions

The full_colors test file exercises hex_to_rgb(),
rgb_to_hex(), rgb_to_rgb_percent()
and rgb_percent_to_rgb() as fully as is practical.

For conversions between hexadecimal and integer rgb(), that file
generates all 16,777,216 possible color values for each format in
order (starting at #000000 and (0, 0, 0) and incrementing),
and verifies that each one converts to the corresponding value in the
other format. Thus, it is possible to be confident that webcolors
provides correct conversions between all possible color values in
those formats.

Testing the correctness of conversion to and from percentage
rgb(), however, is more difficult, and a full test is not
provided, for two reasons:

	Because percentage rgb() values can make use of floating-point
values, and because standard floating-point types in most common
programming languages (Python included) are inherently imprecise,
exact verification is not possible.

	The only rigorous definition of the format of a percentage value is
in CSS 2, which declares a percentage to be [http://www.w3.org/TR/CSS2/syndata.html#percentage-units] “a
<number> immediately followed by ‘%’”. The CSS 2 definition of
a number [http://www.w3.org/TR/CSS2/syndata.html#value-def-number] places
no limit on the length past the decimal point, and appears to be
declaring any real number as a valid value. As the subset of reals
in the range 0.0 to 100.0 is uncountably infinite, testing all
legal values is not possible on current hardware in any reasonable
amount of time.

Since precise correctness and completeness are not achievable,
webcolors instead aims to achieve consistency in
conversions. Specifically, the full_colors test generates all
16,777,216 integer rgb() triplets, and for each such triplet t
verifies that the following assertion holds:

t == rgb_percent_to_rgb(rgb_to_rgb_percent(t))

The full_colors test has no external dependencies other than
Python, and does not require an internet connection. It is written to
be run standalone (python tests/full_colors.py). However, due to
the fact that it must generate all 16,777,216 color values multiple
times, and perform checks on each one, it does take some time to run
even on fast hardware.

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	webcolors 1.5 documentation

Frequently asked questions

The following notes answer common questions, and may be useful to you
when using webcolors.

What versions of Python are supported?

On Python 2, webcolors supports and is tested on Python 2.6 and
2.7. Although webcolors may work on Python 2.5 or older versions,
this is unintentional and unsupported.

On Python 3, webcolors supports and is tested on Python 3.3 and
3.4. Python 3.0, 3.1 and 3.2 are explicitly unsupported, and the
webcolors test suite will not execute on those versions. The
minimum-3.3 version requirement is because Python 3.3 was both the
first generally-adopted Python 3 release, and because Python 3.3
greatly simplified the process of consistently handling both Python 2
and Python 3 strings in the same codebase.

How closely does this module follow the standards?

As closely as is practical (see below regarding floating-point
values), within the supported formats; the
webcolors module was written with the relevant standards documents
close at hand. See the conformance documentation
for details.

Why aren’t rgb_to_rgb_percent() and rgb_percent_to_rgb() precise?

This is due to limitations in the representation of floating-point
numbers in programming languages. Python, like many programming
languages, uses IEEE floating-point [http://en.wikipedia.org/wiki/IEEE_floating_point], which is
inherently imprecise for some values.

This imprecision only appears when converting between integer and
percentage rgb() triplets.

To work around this, some common values (255, 128, 64, 32, 16 and 0)
are handled as special cases, with hard-coded precise results. For all
other values, conversion to percentage rgb() triplet uses a
standard Python float, rounding the result to two decimal places.

See the conformance documentation for details on
how this affects testing.

Why aren’t HSL values supported?

In the author’s experience, actual use of HSL values on the Web is
extremely rare; the overwhelming majority of all colors used on the
Web are specified using sRGB, through hexadecimal color values or
through integer or percentage rgb() triplets. This decreases the
importance of supporting the hsl() construct.

Additionally, Python already has the colorsys module [http://docs.python.org/library/colorsys.html] in the
standard library, which offers functions for converting between RGB,
HSL, HSV and YIQ color systems. If you need conversion to/from HSL or
another color system, use colorsys.

Why not use a more object-oriented design with classes for the colors?

Representing color values with Python classes would introduce overhead
for no real gain. Real-world use cases tend to simply involve working
with the actual values, so settling on conventions for how to
represent them as Python types, and then offering a function-based
interface, accomplishes everything needed without the addtional
indirection layer of having to instantiate and serialize a
color-wrapping object.

Keeping a simple function-based interface also maintains consistency
with Python’s built-in colorsys module [https://docs.python.org/library/colorsys.html], which has the same
style of interface for converting amongst color spaces.

Note that if an object-oriented interface is desired, the third-party
colormath module [https://pypi.python.org/pypi/colormath/] does have
a class-based interface (and rightly so, as it offers a wider range of
color representation and manipulation options than webcolors).

How am I allowed to use this module?

The webcolors module is distributed under a three-clause BSD
license [http://opensource.org/licenses/BSD-3-Clause]. This is an
open-source license which grants you broad freedom to use,
redistribute, modify and distribute modified versions of
webcolors. For details, see the file LICENSE in the source
distribution of webcolors.

I found a bug or want to make an improvement!

The canonical development repository for webcolors is online at
<https://github.com/ubernostrum/webcolors>. Issues and pull requests
can both be filed there.

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	webcolors 1.5 documentation

 Python Module Index

 w

 			

 		
 w	

 	
 	
 webcolors	

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	webcolors 1.5 documentation

Index

 C
 | H
 | N
 | R
 | W

C

 	

 	CSS21_HEX_TO_NAMES (in module webcolors)

 	CSS21_NAMES_TO_HEX (in module webcolors)

 	CSS2_HEX_TO_NAMES (in module webcolors)

 	

 	CSS2_NAMES_TO_HEX (in module webcolors)

 	CSS3_HEX_TO_NAMES (in module webcolors)

 	CSS3_NAMES_TO_HEX (in module webcolors)

H

 	

 	hex_to_name() (in module webcolors)

 	hex_to_rgb() (in module webcolors)

 	hex_to_rgb_percent() (in module webcolors)

 	HTML4_HEX_TO_NAMES (in module webcolors)

 	

 	HTML4_NAMES_TO_HEX (in module webcolors)

 	html5_parse_legacy_color() (in module webcolors)

 	html5_parse_simple_color() (in module webcolors)

 	html5_serialize_simple_color() (in module webcolors)

N

 	

 	name_to_hex() (in module webcolors)

 	name_to_rgb() (in module webcolors)

 	name_to_rgb_percent() (in module webcolors)

 	

 	normalize_hex() (in module webcolors)

 	normalize_integer_triplet() (in module webcolors)

 	normalize_percent_triplet() (in module webcolors)

R

 	

 	rgb_percent_to_hex() (in module webcolors)

 	rgb_percent_to_name() (in module webcolors)

 	rgb_percent_to_rgb() (in module webcolors)

 	

 	rgb_to_hex() (in module webcolors)

 	rgb_to_name() (in module webcolors)

 	rgb_to_rgb_percent() (in module webcolors)

W

 	

 	webcolors (module)

 Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		webcolors 1.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2014, James Bennett.
 Created using Sphinx 1.2.2.

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

